

Planned Europa Mission Update: Beyond Payload Selection

Todd Bayer, Karen Kirby, Brent Buffington, Jean-Francois Castet, Maddalena Jackson,
Gene Lee, Kari Lewis, Jason Kastner, Kathy Schimmels
NASA -JPL / California Institute of Technology
Johns Hopkins University Applied Physics Laboratory

IEEE Aerospace Conference
5 March 2015

Topics

- Reminder: Why Europa?
- Long road to the current concept
- Major Changes since 2015
- Science instrument accommodation
- Flight System Configuration
- Key Trades
- Interplanetary Trajectory Baseline and Alternate
- Tour Design
- Project Schedule
- Mission Timeline
- What's next

The Ocean That Beckons

"Europa, with its probable vast subsurface ocean sandwiched between a potentially active silicate interior and a highly dynamic surface ice shell, offers **one of the most promising extraterrestrial habitable environments**, and a plausible model for habitable environments beyond our solar system"

"Visions and Voyages", 2011 Planetary Decadal Survey

Europa: Ingredients for Life?

Water:

- Probable saltwater ocean, indicated by surface geology and magnetic field
- Possible lakes within the ice shell, produced by local melting

Chemistry:

- Ocean in direct contact with mantle rock, promoting chemical leaching
- Dark red surface materials contain salts, probably from the ocean

Energy:

- Chemical energy could sustain life
 - Surface irradiation creates oxidants
 - Mantle tidal heating could create reductants
- Geological activity would "stir the pot"

The planned Europa mission would test habitability hypotheses

The long road to the current concept

Major Changes since 2015

Version 8.5 (MCR)

- > 1800 kg FS Dry mass
- > 190 Ah Battery
- ➤ 66 m² Solar Array area
- ➤ 4.4 TB Downlink capability

- Accommodated selected instruments (10)
- Bigger Solar Array & Battery
- Dozens of optimization trades
- Engine Architecture
- Baselined 15F10 trajectory: 42
 Europa flybys, 2.8 Mrad EOM dose
- Addition of SLS Block 1B and Delta IV Heavy; removal of Atlas V 551 from compatible launch vehicles list
- Back up Lander Relay

Version 14.2 (SRR/MDR)

- > 350 Ah Battery
- > 90 m² Solar Array area
- ➤ 5.5 TB Downlink capability

Significant Maturation of Spacecraft with Selected Instruments

Science Instruments Accommodated

Deck

Flight System Configuration

Major Trades Completed & Future Major Trades

Completed and Incorporated Trades	Selected
Main Engine Trade	25N engine clusters for Main Engine and RCS
Vehicle Configuration	HGA on -X, Nadir Deck attached to vault
REASON accommodated	REASON mounted to SA – articulated arrays
Avionics/Payload Data Interface Trade	SpaceWire for High Speed, UART for Low Speed
Instrument Nadir Deck Thermal Design	Nadir Deck isolated from Thermal Loop
MISE Thermal Trade	Cyrocooler
ICEMAG Boom	Rigid 2-hinge 5m boom
Active vs Passive Thermal Architecture	Active fluid loop
REASON Redundancy	Partial redundancy
ZTJ vs UTJ Solar Cells	ZTJ contract selected
Vault Architecture	Hinged design - mounting on all interior surfaces
Reaction Wheels	4x18" Reaction Wheels mounted in PM Skirt
Emergency Communication Mode	10 bps and Tones

<u>Trades Completed (Ready to be incorporated)</u>

- Tank size to take advantage of additional Lift Mass
- SSIRU vs MIMU
- Radiator Louvers, Throttle Valve
- CSS Placement
- SA Cell Size

Future Trades

- RCS vs RWA during cruise
- RF Vault Location
- SA Challenge Implementation
- 1 hinge Mag Boom
- LV Separation System
- SA Deployment Approach
- Thermal Hybrid Approach
- ICEMAG SRU Removal / Boom stiffness
- Resolve 10 bps continuous usage
- Integrated vs Modular Shipping

Future Trades Identified to Reduce Risk

Direct Interplanetary Trajectory Option

EVEEGA Interplanetary Trajectory Option

Jupiter Tour Design Strategy

Europa Clipper Project Schedule

Project Timeline, Phases & Modes

Typical Europa Flyby

E7 Flyby Animation

What's next?

• PDRs!